

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

COURSE DESCRIPTION CARD - SYLLABUS

Advanced power generation t	echnology			
Course				
Field of study		Year/Semester		
Green energy		1/2		
Area of study (specialization)		Profile of study		
-		general academic		
Level of study		Course offered in		
Second-cycle studies		english		
Form of study		Requirements		
full-time		compulsory		
Number of hours				
Lecture	Laboratory clas	ses Other (e.g. online)		
30	15	0		
Tutorials	Projects/semina	ars		
15	0			
Number of credit points				
4				
Lecturers				
Responsible for the course/lecturer:		Responsible for the course/lecturer:		
dr inż. Michał Gołębiewski		dr hab. inż. Rafał Ślefarski		
email: michal.golebiewski@put.poznan.pl		email: rafa.slefarski@put.poznan.pl		
tel. 616652135 Faculty of Environmental Engineering and		tel. 616652218		
		Faculty of Environmental Engineering and		
Energetic		Energetic		
ul. Piotrowo 3 60-965 Poznań		ul. Piotrowo 3 60-965 Poznań		

Prerequisites

Basic knowledge from thermodynamics, fluid mechanics, mechanics, gas cycles and steam cycles.

Can use the scientific method for problem solving, experimenting, and making conclusions

Knows the limitations of his or her own knowledge and skills, understands the non-technical aspects and results of engineering activity and their importance

Course objective

To acquaint students with the theoretical and practical problems related to the flow issues, materials

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

issues and exploatation parameters of internal combustion gas engines, gas turbine, steam and gas systems, CHP systems, industral Heat Pumps, ORC systems, modern fuels: hydrogen and ammonia.

Course-related learning outcomes

Knowledge

1.Student has expanded knowledge necessary to understand gas engines and specialist knowledge about construction, methods of designing, manufacturing, operating, safety systems as well as impact on the economy, society and the environment in the field of advanced power generation technology

2.Student has extended and deep knowledge in the field of advanced power generation technology

3.Student has deep knowledge of operational parameters impact on the efficiency of advanced power generation technology and functioning of energy systems

Skills

1.Student is able to use his knowledge to find right sources and interpret founded information in order to solve both standard and non-standard problems related with advanced power generation technology

2.Student is able to solve research and engineering tasks requiring the use of engineering standards and norms as well as the use of technologies appropriate for advanced power generation technology, using experience gained in an professional environment engaged in engineering activities

3.Student use a foreign language at B2 + level (at European Language Training Description System) and specialized terminology related to advanced power generation technology

Social competences

1.Student is ready to recognize the importance of knowledge in solving cognitive and practical problems and to seek expert opinions in case of difficulties in solving the problems on field of advanced power generation technology

2.Student is ready to fulfill social obligations as well as inspire and organize activities for the social environment

3.Student is ready to perform responsible professional roles, taking into account changing social needs, including:

- developement of the profession's achievements,

- maintainance the profession ethos,

 - compliance of professional development with ethics principles and introduce actions to comply with these principles

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

Lecture - the written examination. The evaluation of student knowledge will be held based on an answers on 5 questions from the material presented during the lectures.

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

Classes - final test and rewarding knowledge necessary for the accomplishment of the problems in the area of the subject

Laboratory - positively assessed reports on the performed laboratory exercises

Programme content

Construction of gas engines, internal combustion engines processes, exploitation of internal combustion gas engines, development trends in gas engines construction, works cycles, turbocharging, methods of ignition, diagnostic methods of engines, emission of toxic compounds, engine failures, combustion an unusual gases in engines, Construction and operation of gas turbines, Cooling systems, combustion chamber, methods of flame stabilization, The operating parameters of gas turbines, TIT temperature, cooling gas turbine elements, Gas power plant, CCGT units, simple cycle efficiency, manganese, Trends of development of gas turbines: industrial units and small units, circulating agents for ORC and Heat Pumps, hydrogen and ammonia combustion technologies.

Teaching methods

Lecture: multimedia presentation, illustrated with examples on the board.

Exercises: performing theoretical calculations on the board.

Laboratory: performing laboratory exercises

Bibliography

Basic

1. Heywood J.B., Internal Combustion Engine Fundamentals

- 2.C.R. Ferguson and A.T. Kirkpatrick, Internal Combustion Engines Applied Thermosciences, Second
- 3.Stone R., Introduction to Internal Combustion Engines
- 4. Arthur H. Lefebvre, Dilip R. Ballal, Gas turbine. Combustion. Alternative Fuels and Emissions

5. Meherwan P. Boyce: Gas Turbine Engineering Handbook

- 6.Chmielniak T. Maszyny Przepływowe. Wydawnictwo Politechniki Śląskiej
- 7. Wajand J. A., Wajand J. T., Tłokowe Silniki Spalinowe Średnio- i Szybkoobrotowe
- 8. Serdecki W., Badania Silników Spalinowych. Laboratorium, Wydawnictwo Politechniki Poznańskiej

9.Kowalewicz A. Podstawy procesów spalania. WNT, Warszawa 2000

Additional

1.Dobski, T.: Combustion Gases in Modern Technologies, 2scd Ed., Wydawnictwo Politechniki Poznańskiej

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

- 2.Skorek J. Kalina J.: Gazowe układy kogeneracyjne
- 3.Miller A.: Turbiny gazowe i układy parowo-gazowe
- 4.K. Niewiarowski: Tłokowe silniki spalinowe, WKiŁ, 1983
- 5.Kowalewicz A. Tworzenie mieszanki i spalanie w silnikach o zapłonie iskrowym. WKiŁ
- 6.R.S. Benson, N.D. Whitehouse: Internal Combustion Engines. Pergamon Press, 1979

Breakdown of average student's workload

	Hours	ECTS
Total workload	100	4,0
Classes requiring direct contact with the teacher	60	2,5
Student's own work (literature studies, preparation for	40	1,5
laboratory classes/tutorials, preparation for tests/exam) ¹		

¹ delete or add other activities as appropriate